2014暑期夏令營:函數(shù)思想,是指用函數(shù)的概念和性質(zhì)去分析問題、轉(zhuǎn)化問題和解決問題。方程思想,是從問題的數(shù)量關(guān)系入手,運用數(shù)學(xué)語言將問題中的條件轉(zhuǎn)化為數(shù)學(xué)模型(方程、不等式、或方程與不等式的混合組),然后通過解方程(組)或不等式(組)來使問題獲解。有時,還實現(xiàn)函數(shù)與方程的互相轉(zhuǎn)化、接軌,達到解決問題的目的。
等價轉(zhuǎn)化是把未知解的問題轉(zhuǎn)化到在已有知識范圍內(nèi)可解的問題的一種重要的思想方法。通過不斷的轉(zhuǎn)化,把不熟悉、不規(guī)范、復(fù)雜的問題轉(zhuǎn)化為熟悉、規(guī)范甚至模式法、簡單的問題。歷年高考,等價轉(zhuǎn)化思想無處不見,我們要不斷培養(yǎng)和訓(xùn)練自覺的轉(zhuǎn)化意識,將有利于強化解決數(shù)學(xué)問題中的應(yīng)變能力,提高思維能力和技能、技巧。 轉(zhuǎn)化有等價轉(zhuǎn)化與非等價轉(zhuǎn)化。等價轉(zhuǎn)化要求轉(zhuǎn)化過程中前因后果是充分必要的,才保證轉(zhuǎn)化后的結(jié)果仍為原問題的結(jié)果。非等價轉(zhuǎn)化其過程是充分或必要的,要對結(jié)論進行必要的修正(如無理方程化有理方程要求驗根),它能給人帶來思維的閃光點,找到解決問題的突破口。我們在應(yīng)用時一定要注意轉(zhuǎn)化的等價性與非等價性的不同要求,實施等價轉(zhuǎn)化時確保其等價性,保證邏輯上的正確。
在解答某些數(shù)學(xué)問題時,有時會遇到多種情況,需要對各種情況加以分類,并逐類求解,然后綜合得解,這就是分類討論法。分類討論是一種邏輯方法,是一種重要的數(shù)學(xué)思想,同時也是一種重要的解題策略,它體現(xiàn)了化整為零、積零為整的思想與歸類整理的方法。有關(guān)分類討論思想的數(shù)學(xué)問題具有明顯的邏輯性、綜合性、探索性,能訓(xùn)練人的思維條理性和概括性,所以在高考試題中占有重要的位置。